

Guillelmo Gómez-Ceballos

Massachusetts Institute of Technology

On behalf of the CDF Collaboration

Fermilab Wine & Cheese, March 2004

#### In this talk...

A lot of analyses are in progress at CDF, here not at all exhaustive summary!

I will show mostly new results...

- QCD/Jets Physics Today's Topics:
  - Inclusive jet cross-section
  - Underlying event studies
  - W + n jets
  - Diphoton events
  - $\gamma$  + b/c cross-sections

- B/C Physics Today's Topics:
  - B lifetimes in exclusive channels
  - $B_s \rightarrow \mu \mu \text{ search}$
  - Semileptonic B decays
  - CP asymmetries in D<sup>0</sup> decays
  - Baryons and Pentaquark searches

- Not included:
  - Diffractive Physics
  - Exclusive Diffractive production:  $\chi_c \rightarrow J/\psi + \gamma$
  - Jet algorithms
  - ...

- Not included:
  - B, C, J/ψ cross-sections
  - B Hadron masses
  - Two body charmless decays
  - Tagging studies
  - $X(3872) \rightarrow J/\psi \pi \pi \text{ state}$
  - Branching ratio measurements
  - ..

## Tevatron performance

- As you know the Tevatron is working very well this year
- Record Initial luminosity = 7.2 X 10<sup>31</sup> sec<sup>-1</sup> cm<sup>-2</sup>
- Detector efficiency ~85-90%



- ~300 pb<sup>-1</sup> on tape
- ~100-200 pb-1 used for analysis so far

# QCD and Jet Physics

#### **Motivation**

- Tevatron = Jet factory
- All production processes are "QCD related":

Optimal understanding is basic for all analyses

- Main parameters (ex.: gluon PDFs in high x)
- Non-perturbative regime (ex.: underlying event studies)
- Studies of specific processes where QCD is important (ex.: diphotons, W+jets, γ+b/c)
- Probe higher energy scales:
  - Higher vs → higher s (factor 5 for  $E_T$  > 600 GeV w.r.t. run I)
  - Precise test of perturbative QCD at NLO
  - Look for deviations → new physics
- Other studies of interest:

Diffraction, hadron spectrocopy...

## Inclusive Jet Cross Section

#### Very challenging analysis:

- Theoretical computation is difficult (NNLO still going on...)
- Uncertainties in PDFs
- Cross-section varies with E<sub>t</sub> by 8 orders of magnitude (precise energy scale)



#### Inclusive Jet Cross Section

- Theoretical error dominated by PDFs
- Experimental error dominated by energy scale



Better understanding of the calorimeter response  $\rightarrow$  reduce the systematic uncertainty

#### Inclusive Jet Cross Section

- There was an apparent excess in Run I data
- SM explanation: gluon PDF was not well constrained at high x



Data currently agrees with NLO prediction within errors

#### High E<sub>T</sub> Jets

- •Starting an era of QCD precision measurements at Hadron Colliders
- •Studying "QCD backgrounds" in order to look for new Physics



#### Energy flow inside jets

– Jet shape:

fractional energy flow  $\Psi(r) = E_T(0:r) / E_T(0:R),$ where R=1

- In central region, do it with
  - Calorimeter towers (?)
  - Charged tracks (?)
- Shapes are nearly identical
- Pythia and data agree very well in the central region



$$\Psi(r) = rac{1}{N_{
m jets}} \Sigma_{
m jets} rac{E_T(0,r)}{E_T^{
m jet}(0,R)}$$



## Underlying event studies

# The Underlying Event is everything but the two outgoing Jets

- Whole event:
  - Hard scattered partons
  - Initial state radiation
  - Final state radiation
  - Multi-parton interactions
  - Proton remnants
  - ... everything is mixed with color reconnections

- Underlying event:~(whole event)-(hard scatt)
  - ISR
  - A fraction of FSR
  - Multi-parton interactions
  - Proton remnants
  - ... but not completely independent from the hard scattering part



# Underlying event studies



- Look at charged particle correlations in the azimuthal angle  $\Delta \phi$  relative to the leading calorimeter jet (JetClu R = 0.7,  $|\eta|$  < 2)
- Define  $|\Delta\phi| < 60^{\circ}$  as "Toward",  $60^{\circ} < |\Delta\phi| < 120^{\circ}$  as "Transverse", and  $|\Delta\phi| > 120^{\circ}$  as "Away"
- All three regions have the same size in  $\eta$ - $\phi$  space,  $\Delta \eta x \Delta \phi = 2x120^{\circ} = 4\pi/3$

## Underlying event studies

- PYTHIA tune A (on Run I data) reproduces well Run II data
- HERWIG works only at high E<sub>T1</sub>



Average charged particle density, dN/dηdφ, in the "transverse" region versus E<sub>T</sub>(jet#1) for "Leading Jet" and "Back-to-Back" events compared with PYTHIA Tune A and HERWIG

The global comparison between data and QCD predictions is reasonable

We go to some specific channels now...

## $W \rightarrow ev + jets cross section$

- Test of QCD predictions at large Q<sup>2</sup>, fundamental channel for Top/Higgs. Compared to LO ALPGEN + Herwig
- One energetic and isolated electron + high E<sub>T</sub> jets
- Backgrounds: Top dominates for 4-jet bin, QCD is an important fraction in all jet bins



## $W \rightarrow ev + jets cross section$



## $W \rightarrow ev + jets cross section$



#### Diphoton cross-section measurement

- Study of diphoton QCD production
  - Two isolated and energetic high E<sub>t</sub> photons in the central region
- Comparison with QCD predictions:
   DIPHOXand ResBos

Good agreement between data and QCD predictions!





## $\gamma$ + b/c cross-section

- It probes the heavy flavor content of the proton, sensitive to new Physics
- Basic requirements:
  - One isolated and High  $E_t \gamma$  (> 25 GeV)
  - One jet with a secondary vertex (b/c "like" jet)
- Fit on the secondary vertex mass distribution of the tagged jets to determine the number of events containing b, c and uds quarks in the data





Cross-section measurements agree with the QCD predictions

Overall fit

$$\sigma(b + \gamma) = 40.6$$
 +/- 19.5 (stat.) + 7.4 -7.8 (sys.) pb  $\sigma(c + \gamma) = 486.2$  +/- 152.9 (stat.) + 86.5 -90.9 (sys.) pb

## QCD summary

- Measured inclusive cross-section agrees with NLO QCD Trying to reduce the systematic uncertainties
- Modeling the Underlying Event is important for precise Jet measurements A tuned PYTHIA version agrees well with CDF data
- Diphoton analysis and g + heavy quark production
   Results are found to be consistent with Pythia LO predictions
   No evidence so far of new physics production
- Study of W+jets is important to test QCD predictions at large Q<sup>2</sup> It is a very important channel for Top/Higgs Physics

# Charm and Bottom Physics

# B Physics at CDF

BB production mechanics in hadron collider:





- Huge cross-section (~100 μb)
- All *B* species produced:

$$-B_{u},B_{d},\mathbf{B}_{s},\mathbf{B}_{c},L_{b},\dots$$

 $\overline{BUT}$  s(bb) << s(pp)  $\triangleright$  B events have to be selected with specific triggers...

Trigger requirements: large bandwidth, background suppression, deadtimeless

## B Triggers at CDF Run II

- Di-lepton dilepton sample
  - $p_T(\mu/e) > 1.5/4.0 \text{ GeV/c}$
  - J/ψ modes, masses, lifetime, x-section
  - Yield 2x Run I (low Pt threshold, increased acceptance)
- lepton + displaced track semileptonic sample
  - p<sub>T</sub>(e/ $\mu$ ) > 4 GeV/c, 120  $\mu$ m < d0(Trk) < 1mm, pT(Trk) > 2 GeV/c
  - Semileptonic decays, Lifetimes, flavor tagging
  - B Yields 3x Run I
- Two displaced vertex tracks hadronic sample
  - p<sub>T</sub>(Trk) >2 GeV/c, 120 μm < d0(Trk) < 1mm,  $\Sigma$ p<sub>T</sub> > 5.5 GeV/c
  - Branching ratios, B<sub>s</sub> mixing...





#### B/C analyses in this talk vs. Trigger

- Dilepton Trigger:
  - B hadron lifetimes with exclusive modes
  - $B_{s(d)} \rightarrow mm search$
- Lepton + Displaced Track Trigger:
  - Yields in Semileptonic B decays
- Two Displaced Tracks Trigger:
  - CP Asymmetries and Decay Rate ratios in D<sup>0</sup> decays
  - Search for Pentaquarks

#### **B** hadron Lifetimes

#### PDG values

Test of Heavy Quark
 Expansion predictions of the
 lifetimes for different B
 hadron species:

$$\tau(B^+) > \tau(B^0) \sim \tau(B_s) > \tau(\Lambda_b) >> \tau(B_c)$$

- CDF can be competitive in all B hadron lifetimes measurements (better momentum and vertex resolution than any other current experiment)
- B<sup>0</sup> and B<sup>+</sup> can be used as control samples

| B hadron       | Lifetime (ps)   | cτ (μm) |
|----------------|-----------------|---------|
| B+             | 1.674 +/- 0.018 | 502     |
| B <sup>0</sup> | 1.542 +/- 0.016 | 462     |
| $B_s$          | 1.461 +/- 0.057 | 438     |
| B <sub>c</sub> | 0.460 +/- 0.180 | 138     |
| $\Lambda_{b}$  | 1.229 +/- 0.080 | 368     |



#### B hadron Lifetimes in exclusive decays

#### J/y trigger

- •Clean
- •Fully reconstructed
- Lifetime unbiased
- •"Low statistics"



$$B^0 \otimes J/y K^{0*} \otimes J/y K_s$$

$$L_b \otimes J/y L_c$$

$$\mathbf{B_s^0} \otimes \mathbf{J/y} f$$

#### Lifetime measurement:

- •Reconstruct decay length
- •Measure p<sub>T</sub> of decay products

$$c\mathbf{t} = \frac{L_{xy}}{\mathbf{b} \mathbf{g}} = \frac{L_{xy} m(B)}{P_{T}(B)}$$

## Exclusive B+→J/ψX Lifetimes

#### Simultaneous fit of Mass and ct distributions



# Exclusive B<sup>0</sup>→J/ψX Lifetimes



# $\Lambda_b \rightarrow J/\psi \Lambda Lifetime$





# Exclusive $B_s \rightarrow J/\psi \phi$ Lifetimes



| CDF Runi I | preliminary | results | (in ps) |
|------------|-------------|---------|---------|
|------------|-------------|---------|---------|

| B hadron       | CDF measurement        | PDG value       |
|----------------|------------------------|-----------------|
| B+             | 1.66 +/- 0.04 +/- 0.02 | 1.674 +/- 0.018 |
| B <sup>0</sup> | 1.49 +/- 0.05 +/- 0.03 | 1.542 +/- 0.016 |
| $\Lambda_{b}$  | 1.25 +/- 0.26 +/- 0.10 | 1.229 +/- 0.080 |
| $B_s$          | 1.33 +/- 0.14 +/- 0.02 | 1.461 +/- 0.057 |

 $R(B^{+}/B^{0}) = 1.119 +/- 0.046 \text{ (stat.)} +/- 0.014 \text{ (syst.)}$ 

(PDG: 1.073 +/- 0.014)

## Rare B decays: B <sub>s(d)</sub> → µ<sup>+</sup>µ<sup>-</sup>

- SM prediction: BR(B<sub>s</sub> $\rightarrow \mu^+\mu^-$ ) = (3.8 +/- 1.0) 10<sup>-9</sup>
- Several extensions to the SM predict an enhancement of this branching ratio by 1 to 3 orders of magnitude
- If there is not excess we can already constrain several SUSY models!



looking at the signal mass region

# Rare B decays: B $_{s(d)}\rightarrow \mu^{+}\mu^{-}$

No excess has been found unfortunately

• Limits on the Branching fractions have been set

(Expected/Observed) BR limits vs. luminosity

#### Already Submitted to PRL!

|                    | B <sub>s</sub> →μ⁺μ⁻   | $B_d \rightarrow \mu^+ \mu^-$ |
|--------------------|------------------------|-------------------------------|
| Background         | 1.05 +/- 0.30          | 1.07 +/- 0.31                 |
| Data               | 1                      | 1                             |
| BR limit @95% C.L. | 7.5 X 10 <sup>-7</sup> | 1.9 X 10 <sup>-7</sup>        |
| BR limit @90% C.L. | 5.8 X 10 <sup>-7</sup> | 1.5 X 10 <sup>-7</sup>        |



Slighly better results than Belle and BaBar

1.6 X 10<sup>-7</sup>

2.0 X 10<sup>-7</sup>

Best world result

#### Semileptonic B samples

## lepton + displaced vertex track trigger collects a lot of Semileptonic B decays!

- It provides:
  - High statistics
  - "Clean" environment
  - Good control sample
- But:
  - Lifetime bias
  - Sample composition B<sup>0</sup> Û B<sup>+</sup>
- Work in progress:
  - Understand lifetime measurements in this sample
  - B<sub>s(d)</sub> mixing might be done in Semileptonic B decays



 $> 40000 B \rightarrow I D^0 X decays!$ 

#### Semileptonic B<sub>s</sub> samples



#### **CP** Asymmetries and Decay Rate ratios

 The huge amount data collected by the Two Track Trigger have been used for this analysis

#### Relative branching ratios:

$$\Gamma(D^0 \rightarrow K^+K^-) / \Gamma(D^0 \rightarrow K\pi)$$
  
 $\Gamma(D^0 \rightarrow \pi^+\pi^-) / \Gamma(D^0 \rightarrow K\pi)$ 

 $\Gamma(D^0 \rightarrow KK) / \Gamma(D^0 \rightarrow \pi\pi) \sim 2.8 \text{ (SM)}$ 

Direct CP-violating decay rate assymetries:

$$A_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)} \approx 0(SM)$$

• Candidates selected as:  $D^{*+/-} \rightarrow D^0 \pi$  (unbiased tag of the  $D^0$  flavor)



~2 X 90000 D\*+/-!!!

#### CP Asymmetries and Decay Rate ratios









#### CP Asymmetries and Decay Rate ratios

Very important to understand the asymmetry of the CDF detector!!!

Results are computed after applying a correction for the intrinsic charge asymmetry of the detector response and tracking algorithms



| Ratio                                                          | CDF                          | FOCUS                     |
|----------------------------------------------------------------|------------------------------|---------------------------|
| $\Gamma(D^0 \rightarrow KK)/\Gamma (D^0 \rightarrow K\pi)$     | (9.96 +/- 0.11 +/- 0.12)%    | (9.93 +/- 0.14 +/- 0.14)% |
| $\Gamma(D^{0}\rightarrow\pi\pi)/\Gamma(D^{0}\rightarrow K\pi)$ | (3.608 +/- 0.054 +/- 0.040)% | (3.53 +/- 0.12 +/- 0.06)% |
| $\Gamma(D^0 \rightarrow KK)/\Gamma (D^0 \rightarrow \pi\pi)$   | (2.762 +/- 0.040 +/- 0.034)% | (2.81 +/- 0.10 +/- 0.06)% |

$$A(D^0 \rightarrow KK) = (2.0 +/- 1.2 \text{ (stat.) +/- 0.6 (syst.)})\%$$
  
 $A(D0 \rightarrow \pi\pi) = (1.0 +/- 1.3 \text{ (stat.) +/- 0.6 (syst.)})\%$ 



$$A(D^0 \rightarrow KK) = (0.0 +/- 2.2 \text{ (stat.) +/- 0.8 (syst.)})\%$$
  
 $A(D0 \rightarrow \pi\pi) = (1.9 +/- 3.2 \text{ (stat.) +/- 0.8 (syst.)})\%$ 

• The beginning: Announcements from several experiments around the world provide evidence for the existence of an exotic baryon, a *Pentaquark* with strangeness S=+1

- What are Pentaquarks?
  - Minimum content: 4 quarks and 1 antiquark  $(q_1q_2q_3q_4\overline{Q})$
  - "Exotic" Pentaquarks if the antiquark has a different flavor than the other 4 quarks
  - Quantum numbers can not be defined by 3 quarks alone

## Summary of experiments

#### $\Theta^+$ , M ~ 1.53 GeV/c2, $\Gamma$ <~ 15 Mev/c2)

- LEPS,  $\gamma n \rightarrow K^-\Theta^+ \rightarrow K^-K^+n$ , 4.6  $\sigma$ , M = 1540 MeV/c<sup>2</sup>
- DIANA at ITEP, K<sup>+</sup> Xe →  $\Theta$ <sup>+</sup>N?→ K<sub>s</sub>pN, 4.5 σ, M<sub>1</sub>1539 MeV/c<sup>2</sup>
- CLAS,  $\gamma d \rightarrow \Theta^+ p K^- \rightarrow n K^+ p K^-$ , 5.3  $\sigma$ ,  $M = 1542 MeV s^2$
- SAPHIR,  $\gamma p \rightarrow K_s \Theta^+$ , 4.8  $\sigma$ , M = 1540 MeV/C
- v's WA21, E180... Θ<sup>+</sup>→ $K_s$ p spectrum, 6.7 M = 1533 MeV/ $c^2$
- CLAS,  $\gamma p \rightarrow p + \Theta^+ K \rightarrow p + K + n K_2$  (3),  $M = 1555 \text{ MeV/c}^2$
- HERMES,  $\gamma n \rightarrow K \Theta^{+} \rightarrow K^{-}K^{+} n$  = 1527 MeV/c<sup>2</sup>
- ZEUS, ep  $\rightarrow \Theta^+ X \rightarrow K_s p X_s p X$

#### Ξ<sub>3/2</sub>:{Ξ<sup>0</sup>, Ξ<sup>-</sup>, Ξ<sup>--</sup>}, M ~ 1862

- NA49 at SPERN (pp collider at Ecm = 17.2 GeV)

$$\Xi_{3/2}^{+/-} \to \Xi^{+/-} p^{+/-}, \Xi^{+/-} \to \Lambda p^{+/-}$$
 Today!

Last week!: New state → D\*- p

- H1, ep  $\rightarrow$  D\*- p X, M = 3099 MeV/c<sup>2</sup>

#### **BUT:**

- all results are obtained with relatively low statistics, 20-100 events in peaks, S/B~1-0.3, S/sqrt(S+B)~3-6
- some other experiments are seeing "nothing" in similar searches (BES, Hera-B this week...)

#### The new cousin of $\Theta^+$ : $\Xi^{--}$



#### M=1.862± 0.002 GeV



NA49 CERN SPS hep-ex/0310014

- CDF has developed tracking of long lived hyperons ( $\Xi$  and  $\Omega$ ) in the SVX detector
- Silicon tracking of hyperons improves momentum and impact parameter resolution as well as background reduction



Analysis has been performed using two different triggers

 $N_{TTT}$  ~ 18 times larger than NA49 data  $N_{Jet20}$  ~ 2 times larger than NA49 data

But... No excess is observed in the CDF data



- No signals have been found
- Upper limits have been set
- Results confirmed using two different triggers

| Channel<br>(TTT) | # of events | R(X <sub>1860</sub> /X <sub>1530</sub> )<br>U. L. 95% C.L. | R(X <sub>1860</sub> /X <sub>1530</sub> )<br>NA49 |
|------------------|-------------|------------------------------------------------------------|--------------------------------------------------|
| X-p+             | 57+/-51     | 0.07                                                       | ~0.21                                            |
| X-p-             | -54+/-47    | 0.04                                                       | ~0.24                                            |
| X-p+/-           | 47+/-70     | 0.08                                                       | ~0.45                                            |

Other Pentaquarks searches are in progress at CDF, to be continued...

## Charmed-strange baryons

$$\Xi_c^+ \to \Xi^- p^+ p^+, \Xi^- \to \Lambda p^-$$

$$\Xi_c^0 \! o \! \Xi^- oldsymbol{p}^+, \! \Xi^- \! o \! \Lambda oldsymbol{p}^-$$





This is the first observation of charmed-strange isodoublet  $\{\Xi^0_c, \Xi^+_c\}$  in hadron collider

## Charm/Bottom summary

- Measured Hadron B lifetimes using fully reconstructed modes: precision at the level of 3% for B<sup>0</sup> and B<sup>+</sup> hadrons
- Limits on BR( $B_{s(d)} \rightarrow mm$ )) of the order of 10<sup>-7</sup>: best world limits
- Large Semileptonic B sample collected by the lepton + Displaced Track Trigger
- Studies on CP Asymmetries and Decay Rate Ratios of Cabibbo supressed  $D^0$  decays
- Pentaquarks searches: no excess found yet

#### Conclusions

- $\bullet$  Starting an era of QCD precision measurements, Jets with  $E_t$  up to 600 GeV
- Pythia for Underlying Event well tuned at CDF
- World best  $B_s \rightarrow mm$  limit, BR( $B_s \rightarrow mm$ ) < 5.8 X 10<sup>-7</sup> at 90% C.L.
- Precision charm Physics
  - $\bullet A(D^0 \rightarrow KK) = (2.0 + /- 1.2 \text{ (stat.) } + /- 0.6 \text{ (syst.)})\%$
  - •A(D0 $\rightarrow \pi\pi$ ) = (1.0 +/- 1.3 (stat.) +/- 0.6 (syst.))%
- We can not confirm X<sub>2/3</sub> from NA49

(hard) work in progress, stay tuned!